MONO TORR®

Point-Of-Use Purifiers

SAES Pure Gas, Inc. San Luis Obispo, California The Technology of Pure Gas

The Need for Purification

Research has shown that gas purification can ensure consistent and repeatable process performance for semiconductor device manufacturing.

Purification isolates critical process areas from house gas distribution systems and protects against gas purity upsets and cross-contamination. As manufacturing processes grow more demanding, gas system impurities must be reduced below one part per billion.

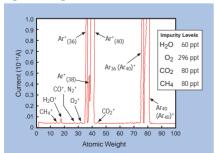
The Getter Technology Approach

Since 1950, SAES Getters has developed evaporable and nonevaporable getter technologies for ultrahigh-vacuum applications. Nonevaporable getter materials, based on zirconium and its alloys, can also be used in ultrahigh purification capable of sub-ppb performance.

Getter materials irreversibly trap gaseous impurity molecules. Gaseous impurities are captured on the surface. When heated, the impurities diffuse into the bulk of the getter. Unlike ambient technologies that rely on surface adsorption only, getter technology utilizes the entire volume of material. This results in superior capacities and longer lifetimes for all impurities.

MonoTorr gas purification products were developed specifically for sub-ppb performance. These getter-based purifiers are preconditioned (activated) at our factory to allow immediate use. Its all-metal technology ensures that no impurities are added.

High Purity Manufacturing


MonoTorr purifiers are engineered for high-purity applications. All piping system wetted surface areas are electropolished 316L stainless steel construction with 10u-inch Ra surface finish or less.

Welding and assembly are performed in our Class 100 cleanroom. Stainless steel diaphragm valves and a 0.003 μ m stainless steel particle filter are standard on all MonoTorr products.

APIMS Measures Performance

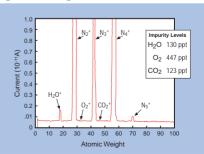
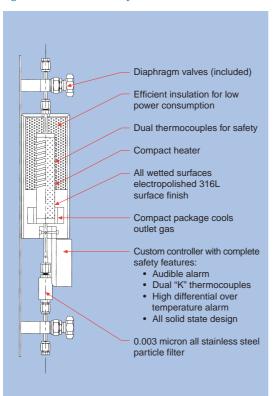

Atmospheric pressure ionization mass spectrometry (APIMS) demonstrates capabilities of the MonoTorr approach to purification. Upstream impurities fluctuating in the low-ppm range are quickly controlled to ppt levels (see figs. 1 and 2 below).

Figure 1 - Argon

Reprinted from Solid State Technology © Penn Well Publishing Company

Figure 2 - Nitrogen



Gases Purified and Impurities Removed

Gas	Product	Impurities Removed
Argon - Ar Helium - He Other Rare Gases	MT-R	H ₂ O, O ₂ , H ₂ , CO, CO ₂ , N ₂ , THC and particles
Nitrogen - N ₂	MT-N	H ₂ O, O ₂ , H ₂ , CO, CO ₂ , THC and particles
Hydrogen - H ₂	MT-H	H ₂ O, O ₂ , CO, CO ₂ , N ₂ and particles

Figure 3 - Side View Cutaway of MonoTorr Phase I 3000

NITROGEN Performance Guarantee

Phase II 3000		Phase II 15000			
Inlet Impurity	0 - 20 slpm	20 - 50 slpm	Inlet Impurity	0 - 30 slpm	30 - 75 slpm
O_2	< 1 ppb	< 1 ppb	02	< 1 ppb	< 1 ppb
H_2O	< 1 ppb	< 1 ppb	H ₂ O	< 1 ppb	< 1 ppb
CO	< 1 ppb	< 1 ppb	CO	< 1 ppb	< 1 ppb
CO_2	< 1 ppb	< 1 ppb	CO ₂	< 1 ppb	< 1 ppb
H_2	< 1 ppb	< 10 ppb	H ₂	< 1 ppb	< 10 ppb
CH ₄	< 1 ppb	< 10 ppb	CH ₄	< 1 ppb	< 10 ppb

RARE GAS
Ar, He, Xe, Ne, Kr and Rn
Performance Guarantee

Phase II 3000		Phase II 15000			
Inlet Impurit	0 - 20 y slpm	20 - 50 slpm	Inlet Impurity	0 - 30 slpm	30 - 75 slpm
02	< 1 ppb	< 1 ppb	02	< 1 ppb	< 1 ppb
H ₂ O	< 1 ppb	< 1 ppb	H ₂ O	< 1 ppb	< 1 ppb
СО	< 1 ppb	< 1 ppb	CO	< 1 ppb	< 1 ppb
CO ₂	< 1 ppb	< 1 ppb	CO ₂	< 1 ppb	< 1 ppb
N ₂	< 1 ppb	< 10 ppb	N ₂	< 1 ppb	< 10 ppb
H ₂	< 1 ppb	< 10 ppb	H ₂	< 1 ppb	< 10 ppb
CH₄	< 1 ppb	< 10 ppb	CH ₄	< 1 ppb	< 10 ppb

HYDROGEN Performance Guarantee

Phase II 3000		Phase II 15000			
Inlet Impurity	0 - 20 slpm	20 - 30 slpm	Inlet Impurity	0 - 30 slpm	30 - 50 slpm
O_2	< 1 ppb	< 1 ppb	O ₂	< 1 ppb	< 1 ppb
H_2O	< 1 ppb	< 1 ppb	H ₂ O	< 1 ppb	< 1 ppb < 1 ppb < 1 ppb
CO	< 1 ppb	< 1 ppb	CO	< 1 ppb	< 1 ppb
CO_2	< 1 ppb	< 1 ppb	CO ₂	< 1 ppb	< 1 ppb
N_2	< 1 ppb	< 10 ppb	N ₂	< 1 ppb	< 10 ppb

Note: Getter lifetime is dependent on purifier size, inlet impurities and average flow rate. Consult the factory for lifetime calculations. Specifications subject to change without notice.


Phase II Controller Features

Life Status - Indicates the life status of the purifier. Good is normal, Marginal indicates approaching depletion and Change includes audible alarm to notify the operator that end-point is approaching and replacement will soon be required (available for rare gases and nitrogen only).

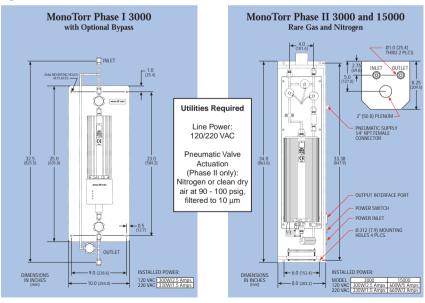
Heater - Indicates status of heater.

Temperature - Displays heater mode while maintaining getter material at preset operating temperature.

Figure 4 - MonoTorr Phase II Control Panel

Valves - Indicates status of purifier as controlled by pneumatic valves.

Alarms - Pneumatic alarm caused by loss of adequate pressure for valves. Power alarm indicates that extended power failure has caused purifier to go into Standby condition. Temperature alarm indicates a high or low temperature condition in the purifier cartridge. The high temperature alarm could be caused by high impurity levels (air) in the gas stream. Alarm causes the purifier to go to Bypass mode. Additional error codes provide alarms for exhaust fan, heater or solid state relay failure.


Heater On/Off - Activates heater only when no alarms exist.

Valve Control - Positions valves to *Purifier* or *Bypass* mode.

LED Check - Assures proper functioning of all LEDs and alarm buzzer.

Acknowledge - Silence audible alarm and restores operation if certain alarm conditions have been corrected.

Figure 5

Phase I Phase II

Designs For All Applications

Two basic designs are available. The Phase I 3000 provides the essential requirements for nitrogen and rare gases at flows up to 5 slpm.

Phase II purifiers are available for rare gases, nitrogen and hydrogen. These purifiers provide added safety, automation and life status monitoring (rare gases and nitrogen only) in a sturdy surface-mountable enclosure. The Phase II 3000 is designed for maximum flows of 50 slpm (rare and nitrogen gases), and 30 slpm for hydrogen. The maximum flow of the Phase II 15000 is 75 slpm (rare and nitrogen gases) and 50 slpm for hydrogen. Refer to the system features matrix on back panel for additional information.

Protection From Operator Error

It is vital to protect any purifier from prolonged exposure to air. MonoTorr purifiers can offer that protection. The Phase II design includes a sensor to continuously monitor and isolate the purifier cartridge in the event of an upstream air leak.

Life Status Sensor

The patented life status sensor (LSS), developed by SAES Pure Gas, provides early warning for impending breakthrough of impurities (see fig.4). The technique measures resistivity change occurring in the getter alloy as impurities are diffused into the bulk of the purification media.

System Features and Specifications Matrix

	MonoTorr Phase I 3000		MonoTorr Phase II 3000 & 15000		
Gas Product Code	N	R	N	R	Н
Additional Specifications ar	nd Features				
Operating Temperature (°C)	350	400	350	400	400
Pressure Rating (psig)	150	150	150	150	120
Heater Power Consumption (watts) Nominal/Maximum	50 < 260	50 < 260	125/< 260 (3000) 187/< 600 (15000)	125/< 260 (3000) 187/< 600 (15000)	125/< 260 (3000) 187/< 600 (15000)
Pressure Drop (psi)	<10	<10	<10	<10	<15
0.003 μm Metal Filter	STANDARD	STANDARD	STANDARD	STANDARD	STANDARD
Bypass Assembly	OPTIONAL	OPTIONAL	STANDARD	STANDARD	STANDARD
Surface Mountable Enclosure(w/ Cooling Fan)	N/A	N/A	STANDARD	STANDARD	STANDARD
Surface Mounting Plate	STANDARD	STANDARD	N/A	N/A	N/A
Life Status Sensor (LSS)	N/A	N/A	STANDARD	STANDARD	N/A
1/4" VCR© Fittings (MCG Fittings Optional)	STANDARD	STANDARD	STANDARD	STANDARD	STANDARD
10 μ Ra Piping Surface Finish	STANDARD	STANDARD	STANDARD	STANDARD	STANDARD
1/4" SS Diaphragm Valves	MANUAL	MANUAL	PNEUMATIC	PNEUMATIC	PNEUMATIC

Gas Type Key: N = Nitrogen R = Rare Gas (Ar, He, etc.) H *All MonoTorr purifiers are CE compliant

Point-Of-Use Purifiers House Gas and Area Purifiers

Products and Services

Certification and Analytical Services InsiTorr™ FastPump

Analytical Systems Analytical Instruments

U.S.A

SAES Pure Gas, Inc. Pure Gas Technologies Headquarters 4175 Santa Fe Road San Luis Obispo, CA 93401, USA Tel.: +1 805 541 9299

Fax: +1 805 541 9399

Trace Analytical Analytical Technologies Headquarters

Tel.: +1 650 364 6895 Fax: +1 650 364 6897 www.traceanalytical.com

Pure Gas Technologies

© SAES Pure Gas, Inc.
Printed in U.S.A. All rights reserved.
MonoTorr and InsiTorr are registered tradem
VCR is a registered trademark of Cajon Co.

EUROPE

SAES Getters S.p.A. Group Headquarters (Italy) Tel.: +39 02 93178 1 Fax: +39 02 93178320

SAES Getters Deutschland GmbH

Tel: +49 221 944 0750 Fax: +49 221 944 0754

SAES Getters G.B., Ltd. Tel: +44 118 956 6856 Fax: +44 118 950 4074

SAES Getters France S.a.r.l. Tel: +33 1 482 48696 Fax: +33 1 482 41052

SAES Getters S.p.A.,

Moscow Representative Office Tel.: +7 095 207 9743 Fax: +7 095 208 0198

ASIA

SAES Getters Japan Co., Ltd. Tel: +81 3 5420 0435 Fax: +81 3 5420 0439

SAES Getters Singapore PTE, Ltd. Tel: +65 534 0757 Fax: +65 534 0307

SAES Getters Singapore, Taiwan Branch Tel: +886 35 62 4650 Fax: +886 35 62 4656

SAES Getters Korea Tel: +82 2 3404 2400 Fax: +82 2 3452 4511

SAES Getters S.p.A. Shanghai Representative Office Tel: +86 21 627 51177 Fax: +86 21 624 58900

An ISO 9001 Registered Company

