PowerXplorerPX5

SPECIFICATIONS

Measured Parameters

(4) differential inputs, 1-600 Vrms, AC/DC, 0.1% rdg + 0.05% FS, 256 samples/cycle, 16 bit ADC

(4) inputs with CTs 1-6000 Arms CT-dependent, AC/DC, 0.1% rdg + CTs, 256 samples/cycle, 16 bit ADC

1 MHz High Speed Sampling, 14 bit ADC

Frequency Range, 10 mHz resolution, 15-20 Hz, 45-65 Hz or 350-450 Hz

Phase Lock Loop - Generator tracking, Standard PQ mode

Monitoring/Compliance

IEEE 1159

IEC 61000-4-30 Class A

EN50160 Quality of Supply

Current Inrush/Energization

Voltage Fault Recording

Long Term Monitoring w/min/max/avg

Continuous Data Logging

Power Quality Triggers

Cycle-by-cycle analysis

256 samples/cycle; 1/2 cycle RMS steps (1)

L-L, L-N, N-G RMS Variations: Sags/swells/interruptions

RMS Recordings V & I (32 pre-fault, 10K post-fault cycles)

Waveshape Recordings (32 pre-fault, 10K post-fault cycles)

Low and Medium Frequency Transients - V & I

High Frequency Transients - V & I, 3% FS trigger (1)

Harmonics Summary Parameters

Cross trigger V & I channels

RMS Event Characterization (IEEE or IEC)

Transient Event Characterization (1)

Distortion/Power/Energy

W, VA, VAR, TPF, DPF, Demand, Energy, etc.

IEEE 1459 Parameters of distorted and unbalanced

Harmonics/Interharmonics per IEC 61000-4-7

THD/Harmonic Spectrum (V,I,W) to 63rd

TID/Interharmonic Spectrum (V,I) to 63rd

Tib/litternarmonic spectrum (v,i) to osid

Flicker per IEC 61000-4-15 (Pst,Plt,Sliding Plt)

Crest Factor, K Factor, Transformer Derating Factor, Telephone Interference Factor

Unbalance (max rms deviation) & sequencing components

5 User Spec Harmonics or Signaling Frequency

Vector/Arithmetic/Coincident Parameters

Available Languages

English, French, Italian, German, Spanish, Swedish

General Specifications

Size (HxWxD): 12" x 2.5" x 8" (30cm x 6.4cm x 20.3cm)

Weight: 4.2 pounds (1.9 kg)

Operating Temperature: 0° to 50° C (32° to 122° F)

Storage Temperature: -20° to 55° C (4° to 131° F)

Humidity: 10 to 90% non-condensing

System Time Clock-Crystal controlled-1 second resolution

Charger/Battery Eliminator: 90-264 VAC 47-63 Hz

Display: LCD color touch screen

Memory options (must have one): 32M-128M removable compact flashcard

Optional Accessories

Current Probes: An extensive selection, including:

Model TR-2510A 0-10 A; up to 0.47" conductors

Model TR-2500A 10-500 A; up to 1/8" diameter

or 2.5" x 0.2" conductors

Model TR-2520A 300-3000 A; up to 2.56" diameter or 1.97" x 5.3" (bus bar)

Madal TD 2010D 1 200 A.

Model TR-2019B 1-300 A; up to 2.0" conductors (requires 116002-G1 adapter)

Flexible probes: ranging in current from 30-6000 A,

24", 36", 48"

Hall Effect Probes for AC/DC applications, 150 A or 1500 A

CT Cable Adapter (CA4300LEM)

Voltage Cable Accessory Pack (VCP4300)

Soft Carrying Case (SCC-4300)

Field Replaceable Battery Pack (BP-PX5)

External Battery Charger (XBC-PX5)

Reusable Shipping Container (RSC-4300)

Weatherproof Container (NEMA4300)

Lockable Portable Case (LPC-4300)

Portable Field Printer (PFP4300)

Communications Interface:

RS232 FiberOptic Adapter (COMM-RS232)

USB FiberOptic Adapter (COMM-OUA)

LAN-FiberOptic Adapter (COMM-OEA)

DRAN-VIEW software: Runs under Windows 98, ME, NT, XP

NodeLink® with download, setups and meter

CD-ROM Training Program

(1) PX5-400 samples at 32 samples/cycle, 1 cycle steps at 400 Hz. Certain parameters measured at 45-65 Hz range only.

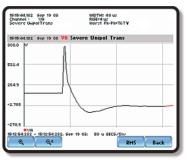
Sets the new standard for high performance, advanced measurement capabilities and enhanced usability


DRANETZ

www.dranetz-bmi.com

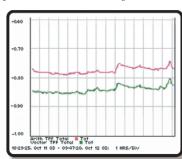
The PowerXplorer™ PX5 integrates the most advanced feature set available in a power monitoring instrument, with an easy-to-navigate, color graphical user interface. With high-speed sampling and data capture (1 microsecond/channel), this 8-channel workhorse simultaneously captures and characterizes hundreds of parameters, using a range of standard and customizable operating modes. The unique measurement capabilities of the PowerXplorer include capture of low-medium-high frequency transients through peak, waveshape, rms duration and adaptive high-speed sampling, as well as power measurements to clearly characterize non-sinusoidal and unbalanced systems.

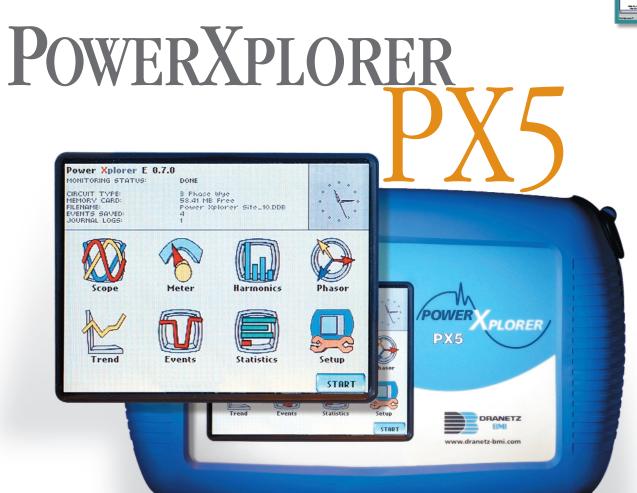
Power Quality Surveys and Diagnostics

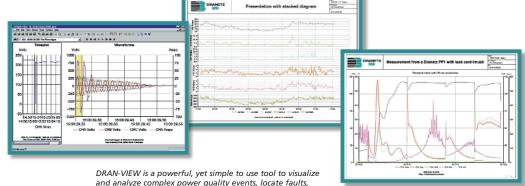

A power quality survey is key to pinpointing and diagnosing problems or negative trends and to effectively implement a reliability-centered maintenance program. By evaluating power quality over a week or longer, baseline conditions and susceptibility

to events can be determined so that corrective measures can be implemented. The PowerXplorer has a built-in event characterizer that directly supports troubleshooting and the gathering of survey data—for improving power quality and equipment reliability, as well as for matching the requirements and susceptibilities of that equipment to the incoming supply.

Fast Transient Capture


The PowerXplorer uses digitized high-speed sampling to capture and analyze microsecond-wide transients (Dranetz 658-like and BMI 8800-like). Transients, generated by fast-switching electronics, medical diagnostic equipment, capacitor


switching, lightning, transformer energization, and load shifting, are immediately characterized as impulsive or oscillatory and detailed for further analysis. Capable of capturing the complete power quality spectrum, the PowerXplorer provides scope-like display of the entire transient.

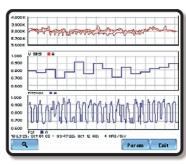

Load Distortion and Imbalance

Rectified-input power supplies plus other non-linear loads have increased from 25% of the total U.S. load to over 65% today. These loads draw current only during part of the waveform, resulting in current distortion, and depending on harmonic

impedances, which causes voltage distortion as well. This distortion can have a significant derating effect on equipment such as motors and transformers, causing overheating that shorten equipment life. The PowerXplorer measures the full range of arithmetic, vector and sequencing parameters contained in IEEE 1459, to evaluate distortion and restore balanced loads.

DRAN-VIEW

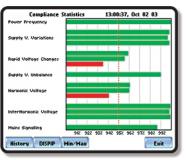
isolate potentially harmful trends, and correlate data


PowerXplorer users can select from a multitude of data displays

such as phasors, waveforms, meters and harmonic spectrums, as well as recording options that include continuous monitoring or report-by exception, and AC and DC measurements for events lasting from a microsecond to an hour. Information presentation options range from quality-of-supply, statistical and trending to the PowerXplorer's unique annunciator "report card" that provides instant classification of events. Remote communications are made easy using RS-232, ethernet or USB options to download data for further analysis and reporting using industry-leading DRAN-VIEW software.

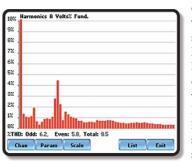
The 8-channel PowerXplorer PX5-400 provides the full range of advanced monitoring and measurement for 400 Hz applications as well as for 50/60 Hz. Designed specifically for military, shipboard, aerospace and other applications, the PowerXplorer PX5-400 contains the same advanced feature set as the PowerXplorer, including advanced data characterization, cross-triggering power, and the measurement of distortion parameters.

Flicker


The activation of arc furnace, large induction machines and other large loads that produce continuous voltage impulses cause a power quality event called flicker. Typically, flicker occurs on systems that are weak relative to the amount of power

required by the load, combined with considerable variations in current occurring over a short period of time. The PowerXplorer captures flicker data per IEC 61000-4-15, which can be further evaluated using Dran-View visualization, analysis and reporting software.

Compliance Monitoring


The PowerXplorer has been designed to meet the most advanced power quality standards, including IEEE 1159, IEC 61000-4-30 Class A and EN50160. A statistical output is produced to quickly verify compliance with international

quality-of-supply standards and benchmark power quality. In an instant, the PowerXplorer provides a snapshot of over 13 key parameters, including unbalance, voltage variations and harmonics.

Harmonic

As the sensitivity of power electronics increases, equipment ranging from HVAC systems, personal computers and copiers to computerized process equipment and manufacturing systems are susceptible to harmonic pollution. In fact, harmonics

can cause small, almost imperceptible variations in performance that aggregate to effect significant long-term damage. Current harmonics generated by a source can pollute the entire power system without being affected itself. The PowerXplorer captures detailed harmonics, interharmonics and subharmonics to effectively troubleshoot the complex problems caused by these events.